2026/01/19

Newest at the top

2026-01-19 23:51:13 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) (Ping timeout: 246 seconds)
2026-01-19 23:50:41 +0100myxos(~myxos@71-33-65-52.tcso.qwest.net) myxokephale
2026-01-19 23:49:46 +0100euphores(~SASL_euph@user/euphores) euphores
2026-01-19 23:46:36 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) merijn
2026-01-19 23:39:07 +0100euphores(~SASL_euph@user/euphores) (Read error: Connection reset by peer)
2026-01-19 23:38:59 +0100takuan(~takuan@d8D86B9E9.access.telenet.be) (Ping timeout: 265 seconds)
2026-01-19 23:37:50 +0100__monty__(~toonn@user/toonn) (Quit: leaving)
2026-01-19 23:35:28 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) (Ping timeout: 246 seconds)
2026-01-19 23:30:48 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) merijn
2026-01-19 23:20:07 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) (Ping timeout: 264 seconds)
2026-01-19 23:18:41 +0100jmcantrell_jmcantrell
2026-01-19 23:17:00 +0100myxos(~myxos@174-18-88-231.tcso.qwest.net) (Ping timeout: 252 seconds)
2026-01-19 23:15:01 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) merijn
2026-01-19 23:07:41 +0100jmcantrell_(~weechat@user/jmcantrell) jmcantrell
2026-01-19 23:04:14 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) (Ping timeout: 244 seconds)
2026-01-19 22:59:34 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) merijn
2026-01-19 22:55:37 +0100debayan(~debayan@user/debayan) (Quit: WeeChat 4.8.1)
2026-01-19 22:52:54 +0100marinelli(~weechat@gateway/tor-sasl/marinelli) marinelli
2026-01-19 22:49:55 +0100debayan(~debayan@user/debayan) debayan
2026-01-19 22:49:04 +0100trickard_(~trickard@cpe-82-98-47-163.wireline.com.au)
2026-01-19 22:48:29 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) (Ping timeout: 250 seconds)
2026-01-19 22:46:33 +0100trickard(~trickard@cpe-82-98-47-163.wireline.com.au) (Read error: Connection reset by peer)
2026-01-19 22:43:49 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) merijn
2026-01-19 22:36:47 +0100tromp(~textual@2001:1c00:3487:1b00:6d43:de22:a68b:dec7)
2026-01-19 22:35:37 +0100 <EvanR> yeah
2026-01-19 22:34:38 +0100 <jreicher> ("smooth")
2026-01-19 22:34:32 +0100 <jreicher> Not just closed, but "no corners"
2026-01-19 22:32:46 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) (Ping timeout: 255 seconds)
2026-01-19 22:31:00 +0100tromp(~textual@2001:1c00:3487:1b00:f96f:f7c1:9b58:4be8) (Quit: My iMac has gone to sleep. ZZZzzz…)
2026-01-19 22:28:02 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) merijn
2026-01-19 22:25:30 +0100 <EvanR> then it sweeps over the entire plane
2026-01-19 22:24:44 +0100 <EvanR> or you mean if it's one closed curve
2026-01-19 22:24:32 +0100 <EvanR> taking the square again, it misses huge parts of the plane entirely
2026-01-19 22:24:16 +0100 <EvanR> no, that was a botched prediction
2026-01-19 22:20:31 +0100 <jreicher> So if the curve is an analytic function (very smooth) then you agree every point on the plane will be coloured?
2026-01-19 22:19:03 +0100 <EvanR> at corners if there are any, stop and start again in another direction
2026-01-19 22:18:45 +0100 <jreicher> There was a bit of ambiguity about what would happen at the corners
2026-01-19 22:18:33 +0100 <jreicher> *now
2026-01-19 22:18:29 +0100 <jreicher> Ah, no I get you.
2026-01-19 22:18:28 +0100 <EvanR> 4?
2026-01-19 22:18:12 +0100 <EvanR> e.g. taking a solid square tile as an example, the interior has 8 rays going through it at any given point
2026-01-19 22:16:53 +0100 <EvanR> not every point
2026-01-19 22:16:43 +0100merijn(~merijn@host-cl.cgnat-g.v4.dfn.nl) (Ping timeout: 246 seconds)
2026-01-19 22:16:40 +0100 <jreicher> If you don't "step" along the curve in discrete amounts I think probie is right and that every point will have an infinite number of rays passing through. You might be able to concoct some kind of "density" measure though. incidentally this is reminiscent of https://en.wikipedia.org/wiki/Jordan_curve_theorem
2026-01-19 22:14:50 +0100 <EvanR> jreicher, yeah
2026-01-19 22:14:44 +0100 <EvanR> noodling it out, points might have finite rays through it, or infinite if there was a caustic focus point
2026-01-19 22:12:24 +0100 <jreicher> BTW by "two rays" do you mean one on one side of the curve and one on the other? So the idea is one ray is "inside" the shape and the other is "outside"?
2026-01-19 22:12:23 +0100 <probie> Or are there a finite number of points on each curve?
2026-01-19 22:11:36 +0100 <probie> Would every ball on this plane have an infinite numbers of rays going through it?
2026-01-19 22:11:30 +0100 <jreicher> I think it's a geometric construction